Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453000

ABSTRACT

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Subject(s)
COVID-19 , Receptors, Cell Surface , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , NF-kappa B/metabolism , SARS-CoV-2/metabolism , MAP Kinase Signaling System , THP-1 Cells , Amyloid beta-Peptides , COVID-19/metabolism , Cell Adhesion Molecules/metabolism , Signal Transduction , Lectins, C-Type/metabolism , Polysaccharides/metabolism , Dendritic Cells/metabolism
2.
J Adv Res ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38280716

ABSTRACT

INTRODUCTION: Ovarian low response to follicle-stimulating hormone (FSH) causes infertility featuring hypergonadotropic hypogonadism, ovarian failure, and/or defective ovarian response. OBJECTIVES: N-glycosylation is essential for FSH receptor (FSHR). Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is the most common N-glycosylation. Core fucosylation level changes between individuals and plays important roles in multiple physiological and pathological conditions. This study aims to elucidate the significance of FUT8 to modulate FSHR function in female fertility. METHODS: Samples from patients classified as poor ovary responders (PORs) were detected with lectin blot and real-time PCR. Fut8 gene knockout (Fut8-/-) mice and FUT8-knockdown human granulosa cell line (KGN-KD) were established and in vitro fertilization (IVF) assay, western blot, molecular interaction, immunofluorescence and immunoprecipitation were applied. RESULTS: Core fucosylation is indispensable for oocyte and follicular development. FSHR is a highly core-fucosylated glycoprotein. Loss of core fucosylation suppressed binding of FSHR to FSH, and attenuated FSHR downstream signaling in granulosa cells. Transcriptomic analysis revealed the downregulation of several transcripts crucial for oocyte meiotic progression and preimplantation development in Fut8-/- mice and in POR patients. Furthermore, loss of FUT8 inhibited the interaction between granulosa cells and oocytes, reduced transzonal projection (TZP) formation and caused poor developmental competence of oocytes after fertilization in vitro. While L-fucose administration increased the core fucosylation of FSHR, and its sensitivity to FSH. CONCLUSION: This study first reveals a significant presence of core fucosylation in female fertility control. Decreased fucosylation on FSHR reduces the interaction of FSH-FSHR and subsequent signaling, which is a feature of the POR patients. Our results suggest that core fucosylation controls oocyte and follicular development via the FSH/FSHR pathway and is essential for female fertility in mammals.

3.
J Biol Chem ; 299(12): 105365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865317

ABSTRACT

Glycan structure is often modulated in disease or predisease states, suggesting that such changes might serve as biomarkers. Here, we generated a monoclonal antibody (mAb) against the core fucose of the N-glycan in human IgG. Notably, this mAb can be used in Western blotting and ELISA. ELISA using this mAb revealed a low level of the core fucose of the N-glycan in IgG, suggesting that the level of acore fucosylated (noncore fucosylated) IgG was increased in the sera of the patients with lung cancer, chronic obstructive pulmonary disease, and interstitial pneumonia compared to healthy subjects. In a coculture analysis using human lung adenocarcinoma A549 cells and antibody-secreting B cells, the downregulation of the FUT8 (α1,6 fucosyltransferase) gene and a low level of core fucose of the N-glycan in IgG in antibody-secreting B cells were observed after coculture. A dramatic alteration in gene expression profiles for cytokines, chemokines, and their receptors were also observed after coculturing, and we found that the identified C-C motif chemokine 2 was partially involved in the downregulation of the FUT8 gene and the low level of core fucose of the N-glycan in IgG in antibody-secreting B cells. We also developed a latex turbidimetric immunoassay using this mAb. These results suggest that communication with C-C motif chemokine 2 between lung cells and antibody-secreting B cells downregulate the level of core fucose of the N-glycan in IgG, i.e., the increased level of acore fucosylated (noncore fucosylated) IgG, which would be a novel biomarker for the diagnosis of patients with pulmonary diseases.


Subject(s)
Antibodies, Monoclonal , Fucose , Immunoglobulin G , Lung Diseases , Polysaccharides , Humans , A549 Cells , Antibodies, Monoclonal/metabolism , Antibody Specificity , B-Lymphocytes/immunology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokines/genetics , Chemokines/metabolism , Fucose/blood , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Gene Knockout Techniques , Immunoassay/standards , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung Diseases/diagnosis , Lung Diseases/immunology , Polysaccharides/metabolism , Animals , Mice , CHO Cells , HEK293 Cells , Cricetulus
4.
Elife ; 122023 07 18.
Article in English | MEDLINE | ID: mdl-37461317

ABSTRACT

Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.


In order to grow and divide, cells require a variety of sugars. Breaking down sugars provides energy for cells to proliferate and allows them to make more complex molecules, such as DNA. Although this principle also applies to cancer cells, a specific sugar called mannose not only inhibits cancer cell division but also makes them more sensitive to chemotherapy. These anticancer effects of mannose are particularly strong in cells lacking a protein known as MPI, which breaks down mannose. Evidence from honeybees suggests that a combination of mannose and low levels of MPI leads to a build-up of a modified form of mannose, called mannose-6-phosphate, within cells. As a result, pathways required to release energy from glucose become disrupted, proving lethal to these insects. However, it was not clear whether the same processes were responsible for the anticancer effects of mannose. To investigate, Harada et al. removed the gene that encodes the MPI protein in two types of human cancer cells. The experiments showed that mannose treatment was not lethal to these cells but overall slowed the cell cycle ­ a fundamental process for cell growth and division. More detailed biochemical experiments showed that cancer cells with excess mannose-6-phosphate could not produce the molecules required to make DNA. This prevented them from doubling their DNA ­ a necessary step for cell division ­ and responding to stress caused by chemotherapy. Harada et al. also noticed that cancer cells lacking MPI did not all react to mannose treatment in exactly the same way. Therefore, future work will address these diverse reactions, potentially providing an opportunity to use the mannose pathway to search for new cancer treatments.


Subject(s)
Mannose , Neoplasms , Humans , Cisplatin , Genomic Instability , Nucleotides , DNA Replication
5.
J Biol Chem ; 299(8): 105052, 2023 08.
Article in English | MEDLINE | ID: mdl-37454739

ABSTRACT

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Subject(s)
Disaccharides , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Mice , Disaccharides/pharmacology , Disease Models, Animal , Interleukin-6/genetics , Keratan Sulfate/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/chemically induced , Lectins, C-Type/metabolism
6.
Antioxid Redox Signal ; 38(16-18): 1201-1211, 2023 06.
Article in English | MEDLINE | ID: mdl-36606688

ABSTRACT

Aims: The anticancer function of superoxide dismutases (SODs) is still controversial. SOD3 is an extracellular superoxide dismutase and contains a single N-glycan chain. The role played by the N-glycosylation of SOD3, as it relates to lung cancer, is poorly understood. For this, we performed the structural and functional analyses of the N-glycan of SOD3 in lung cancer. Results: We report herein that the fucose structure of the N-glycan in SOD3 was increased in the sera of patients with lung cancer. In cell lines of non-small lung cancer cell (NSCLC), we also found a high level of the core fucose structure in the N-glycan of SOD3, as determined by lectin blotting and mass spectrometry analysis. To address the roles of the core fucose structure of SOD3, we generated FUT8 (α1,6-fucosyltransferase) gene knockout A549 cells. Using these cells, we found that the core fucose structure of SOD3 was required for its secretion and enzymatic activity, which contributes to the suppression of cell growth of NSCLC cells. Innovation: The core fucosylation is required for the secretion and enzymatic activity of SOD3, which contributes to anti-tumor functions such as the suppression of cell growth of NSCLC. Conclusion: The N-glycans, especially those with core fucose structures, regulate the anti-tumor functions of SOD3 against NSCLC. Antioxid. Redox Signal. 38, 1201-1211.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Glycosylation , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Polysaccharides/chemistry , Polysaccharides/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
7.
Biochem Biophys Res Commun ; 633: 68-71, 2022 12 10.
Article in English | MEDLINE | ID: mdl-36344167

ABSTRACT

Over the past 3 decades, our group has been involved in studies related to the biosynthesis of N-glycan branching and related glycosyltransferases and have purified most of these Golgi-derived enzymes to homogeneity using classical purification methods and cloned the cDNA of GnT-III, IV, V, VI and Fut8 except GnT-IX(Vb) which was obtained by homology cloning. Based primarily on our data, we briefly summarize the significance of three major enzymes and discuss perspectives for future studies on the occasion of Ernesto's 90th birthday celebration.


Subject(s)
1,4-alpha-Glucan Branching Enzyme , Alzheimer Disease , Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , N-Acetylglucosaminyltransferases/genetics , Polysaccharides
8.
Proc Natl Acad Sci U S A ; 119(43): e2205277119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252012

ABSTRACT

Mucins are the main macrocomponents of the mucus layer that protects the digestive tract from pathogens. Fucosylation of mucins increases mucus viscoelasticity and its resistance to shear stress. These properties are altered in patients with ulcerative colitis (UC), which is marked by a chronic inflammation of the distal part of the colon. Here, we show that levels of Fucosyltransferase 8 (FUT8) and specific mucins are increased in the distal inflamed colon of UC patients. Recapitulating this FUT8 overexpression in mucin-producing HT29-18N2 colonic cell line increases delivery of MUC1 to the plasma membrane and extracellular release of MUC2 and MUC5AC. Mucins secreted by FUT8 overexpressing cells are more resistant to removal from the cell surface than mucins secreted by FUT8-depleted cells (FUT8 KD). FUT8 KD causes intracellular accumulation of MUC1 and alters the ratio of secreted MUC2 to MUC5AC. These data fit well with the Fut8-/- mice phenotype, which are protected from UC. Fut8-/- mice exhibit a thinner proximal colon mucus layer with an altered ratio of neutral to acidic mucins. Together, our data reveal that FUT8 modifies the biophysical properties of mucus by controlling levels of cell surface MUC1 and quantity and quality of secreted MUC2 and MUC5AC. We suggest that these changes in mucus viscoelasticity likely facilitate bacterial-epithelial interactions leading to inflammation and UC progression.


Subject(s)
Colitis, Ulcerative , Fucosyltransferases , Animals , Mice , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Fucosyltransferases/genetics , Inflammation , Mucin-2/genetics , Mucin-2/metabolism , HT29 Cells
10.
J Dermatol ; 49(10): 1027-1036, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35811379

ABSTRACT

Mammals express a wide variety of glycans that include N-glycans, O-glycans, proteoglycans, glycolipids, etc. Glycan expression can modulate the cellular functions, and hence is strongly involved in the onset and progression of numerous diseases. Here, we report the relevance of the ectopic expression of keratan sulfate (KS) glycan chains in human malignant melanomas. Using a human melanoma cell line, we found that the KS enhanced the invasiveness of the cells but caused no change in the growth rate of the cells. The phosphorylation of paxillin, a focal adhesion-associated adaptor protein, was strong at the region where KS was expressed in the melanoma tissues, indicating that KS stimulated the phosphorylation of paxillin. We also observed that KS enhanced the adhesion of melanoma cells and this was accompanied by a greatly increased level of phosphorylation of paxillin. These data suggest that the expression of KS contributes to the development of malignant phenotypes such as strong cell adhesion and the invasiveness of melanoma cells.


Subject(s)
Keratan Sulfate , Melanoma , Cell Line, Tumor , Glycolipids , Humans , Keratan Sulfate/genetics , Keratan Sulfate/metabolism , Melanoma/pathology , Paxillin/genetics , Paxillin/metabolism , Proteoglycans , Skin Neoplasms , Melanoma, Cutaneous Malignant
11.
J Biol Chem ; 298(6): 101950, 2022 06.
Article in English | MEDLINE | ID: mdl-35447118

ABSTRACT

Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6ß4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycosylation , Lung Neoplasms , Protein Processing, Post-Translational , Small Cell Lung Carcinoma , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Extracellular Vesicles/metabolism , Humans , Lung Neoplasms/pathology , Polysaccharides/metabolism , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology
12.
J Biol Chem ; 298(6): 101880, 2022 06.
Article in English | MEDLINE | ID: mdl-35367207

ABSTRACT

The deposition of amyloid ß (Aß) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer's disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aß and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aß levels. Even though aged EC-APP770+ mice did not exhibit Aß deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aß deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood-brain barrier upon administration of anti-Aß antibodies.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Brain , Cerebral Amyloid Angiopathy , Endothelial Cells , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/physiopathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Knock-In Techniques , Humans , Mice , Mice, Transgenic , Rats
13.
Glycoconj J ; 39(2): 167-176, 2022 04.
Article in English | MEDLINE | ID: mdl-35089466

ABSTRACT

The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.


Subject(s)
Glycosyltransferases , N-Acetylglucosaminyltransferases , Carcinogenesis , Glycosyltransferases/metabolism , Humans , Intercellular Signaling Peptides and Proteins , N-Acetylglucosaminyltransferases/metabolism , Signal Transduction
14.
Arch Biochem Biophys ; 726: 109115, 2022 09 15.
Article in English | MEDLINE | ID: mdl-34986418

ABSTRACT

This commentary describes a highly cited paper by Yasuhisa Kono that appeared in Archive. Biochem. Biophys. He established the basic mechanism that involves the autooxidation of hydroxylamine for the assay of superoxide dismutase activity and contributed to the development and progress that has been made in the enzyme assay systems.


Subject(s)
Hydroxylamines , Superoxide Dismutase , Superoxides , Hydroxylamines/metabolism , Kinetics , Oxidation-Reduction , Superoxide Dismutase/metabolism
15.
FEBS J ; 289(22): 7147-7162, 2022 11.
Article in English | MEDLINE | ID: mdl-34492158

ABSTRACT

The endoplasmic reticulum (ER) is equipped with multiple quality control systems (QCS) that are necessary for shaping the glycoproteome of eukaryotic cells. These systems facilitate the productive folding of glycoproteins, eliminate defective products, and function as effectors to evoke cellular signaling in response to various cellular stresses. These ER functions largely depend on glycans, which contain sugar-based codes that, when needed, function to recruit carbohydrate-binding proteins that determine the fate of glycoproteins. To ensure their functionality, the biosynthesis of such glycans is therefore strictly monitored by a system that selectively degrades structurally defective glycans before adding them to proteins. This system, which is referred to as the glycan QCS, serves as a mechanism to reduce the risk of abnormal glycosylation under conditions where glycan biosynthesis is genetically or metabolically stalled. On the other hand, glycan QCS increases the risk of global hypoglycosylation by limiting glycan availability, which can lead to protein misfolding and the activation of unfolded protein response to maintaining cell viability or to initiate cell death programs. This review summarizes the current state of our knowledge of the mechanisms underlying glycan QCS in mammals and its physiological and pathological roles in embryogenesis, tumor progression, and congenital disorders associated with abnormal glycosylation.


Subject(s)
Endoplasmic Reticulum , Polysaccharides , Animals , Glycosylation , Endoplasmic Reticulum/metabolism , Polysaccharides/metabolism , Glycoproteins/metabolism , Quality Control , Mammals/metabolism
16.
Adv Exp Med Biol ; 1325: 137-149, 2021.
Article in English | MEDLINE | ID: mdl-34495533

ABSTRACT

Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications.


Subject(s)
Exosomes , Extracellular Vesicles , Neurodegenerative Diseases , Exosomes/metabolism , Extracellular Vesicles/metabolism , Glycosylation , Humans , Neurodegenerative Diseases/metabolism
17.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445285

ABSTRACT

N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.


Subject(s)
Acetylglucosamine/metabolism , Brain/metabolism , Cell Membrane/metabolism , Peptides/metabolism , Receptors, AMPA/metabolism , Sequence Analysis, Protein , Acetylglucosamine/genetics , Animals , Cell Membrane/genetics , Glycosylation , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/metabolism , Peptide Mapping , Peptides/genetics , Receptors, AMPA/genetics
18.
Mol Aspects Med ; 79: 100970, 2021 06.
Article in English | MEDLINE | ID: mdl-34053736

Subject(s)
Polysaccharides , Humans
20.
STAR Protoc ; 2(1): 100316, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33659899

ABSTRACT

N-glycosylation is a fundamental post-translational protein modification in the endoplasmic reticulum of eukaryotic cells. The biosynthetic and catabolic flux of N-glycans in eukaryotic cells has long been analyzed by metabolic labeling using radiolabeled sugars. Here, we introduce a non-radiolabeling protocol for the isolation, structural determination, and quantification of N-glycan precursors, dolichol-linked oligosaccharides, and the related metabolites, including phosphorylated oligosaccharides and nucleotide sugars. Our protocol allows for capturing of the biosynthesis and degradation of N-glycan precursors at steady state. For complete details on the use and execution of this protocol, please refer to Harada et al. (2013), Harada et al. (2020), and Nakajima et al. (2013).


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Polysaccharides/biosynthesis , Animals , Chromatography, Liquid/methods , Dolichols/biosynthesis , Endoplasmic Reticulum/metabolism , Eukaryotic Cells/metabolism , Glycosylation , Humans , Mammals/metabolism , Oligosaccharides/chemistry , Phosphorylation , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Processing, Post-Translational/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...